GUJARAT TECHNOLOGICAL UNIVERSITY

M. Pharm SEMESTER: I

Subject Name: MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES

Subject Code: MAT101T

Scope: This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives: Upon completion of this course the student should be able to

- 1. Chemicals and Excipients
- 2. The analysis of various drugs in single and combination dosage forms
- 3. Theoretical and practical skills of the instruments

Sr No	Course Contents	Total Hrs
No 1	UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV Visible Spectroscopy IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer Flame emission spectroscopy and Atomic absorption	Hrs 11
	spectroscopy: Principle, Instrumentation, Interferences and Applications	
2	NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy	10
3	Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of	10

	Quadrupole and Time of Flight, Mass fragmentation and its rules,	
	Meta stable ions, Isotopic	
	peaks and Applications of Mass Spectroscopy	
4	Chromatography: Principle, apparatus, instrumentation,	11
	chromatographic parameters, factors affecting resolution and	
	applications of the following:	
	a) Paper chromatography b) Thin Layer chromatography c) Ion	
	exchange chromatography d) Column chromatography e) Gas	
	chromatography f) High Performance Liquid chromatography g)	
	Affinity chromatography	
5	a. Electrophoresis: Principle, Instrumentation, Working conditions,	9
	factors affecting separation and applications of the following:	
	a) Paper electrophoresis b) Gel electrophoresis c) Capillary	
	electrophoresis	
	d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso	
	electric focusing	
	b. X ray Crystallography: Production of X rays, Different X ray	
	diffraction methods, Bragg's law, Rotating crystal technique, X ray	
	powder technique, Types of crystals and applications of Xray	
	diffraction.	
6	Potentiometry: Principle, thermal transitions and instrumentation	9
	(heat flux and power compensation anddesigns) working, Ion	
	selective Electrodes and Application of potentiometry.	
	Thermal Analysis: Polymer behavior, factors affecting and	
	instrumentation, and working, application of TGA	

REFERENCES:

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman,5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBSPublishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBSPublishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, MarcelDekker Series